Arabic Text Classification using Feature-Reduction Techniques for Detecting Violence on Social Media
نویسندگان
چکیده
منابع مشابه
Feature reduction techniques for Arabic text categorization
This paper presents and compares three feature reduction techniques that were applied to Arabic text. The techniques include stemming, light stemming, and word clusters. The effects of the aforementioned techniques were studied and analyzed on the K-nearest-neighbor classifier. Stemming reduces words to their stems. Light stemming,by comparison, removes commonaffixes from words without reducing...
متن کاملThe Impact of Feature Reduction Techniques on Arabic Document Classification
Feature reduction are common techniques that used to improve the efficiency and accuracy of the document classification systems. The problems associated with these techniques are the highly dimensionality of the feature space and The difficulty of selecting the important features for understanding the document in question. The document usually consists of several parts and the important feature...
متن کاملUsing Some Web Content Mining Techniques for Arabic Text Classification
With the massive rise in the volume of information available on the World Wide Web these days, and the emergence requirements for a superior technique to access this information, there has been a strong resurgence of interest in web mining research. Web mining is a critical issue in data mining as well as other information process techniques to the World Wide Web to discover useful patterns. Pe...
متن کاملText Summarization as Feature Selection for Arabic Text Classification
Text classification (TC) or text categorization task is assigning a document to one or more predefined classes or categories. A common problem in TC is the high number of terms or features in document(s) to be classified (the curse of dimensionality). This problem can be solved by selecting the most important terms. In this study, an automatic text summarization is used for feature selection. S...
متن کاملArabic Language Text Classification Using Dependency Syntax-Based Feature Selection
We study the performance of Arabic text classification combining various techniques: (a) tfidf vs. dependency syntax, for feature selection and weighting; (b) class association rules vs. support vector machines, for classification. The Arabic text is used in two forms: rootified and lightly stemmed. The results we obtain show that lightly stemmed text leads to better performance than rootified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2019
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2019.0100409